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Abstract: Background: Childhood obesity is a growing global health concern. Metabolomics,
the comprehensive study of metabolites within biological systems, offers a powerful ap-
proach to better define the phenotype and understand the complex biochemical alterations
associated with obesity. The aim of this systematic review was to summarize current
knowledge in the field of metabolomics in childhood obesity and to identify metabolic
signatures or biomarkers associated with overweight/obesity (Ov/Ob) and Metabolically
Unhealthy Obesity (MUO) in children and adolescents. Methods: We performed a system-
atic search of Medline and Scopus databases according to PRISMA guidelines. We included
only longitudinal prospective studies or randomized controlled trials with >12 months
of follow-up, as well as meta-analyses of the above that assessed the relation between
metabolic signatures related to obesity and Body Mass Index (BMI) or other measures of
adiposity in children and adolescents aged 2-19 years with overweight or obesity. Initially,
595 records were identified from PubMed and 1565 from Scopus. After removing duplicates
and screening for relevance, 157 reports were assessed for eligibility. From the additional
search, 75 new records were retrieved, of which none were eligible for our study. Finally,
7 reports were included in the present systematic review (4 reporting on Ov/Ob and 4 on
MUO). Results: The presented studies suggest that the metabolism of amino acids and
lipids is primarily affected by childhood obesity. Metabolites like glycoprotein acetyls,
the Apolipoprotein B/ Apolipoprotein A-1 ratio, and lactate have emerged as potential
biomarkers for insulin resistance and metabolic syndrome, highlighting their potential
value in clinical applications. Conclusions: There is a need for future longitudinal studies
to assess metabolic changes over time, interventional studies to evaluate the efficacy of
therapeutic strategies, and large-scale population studies to explore metabolic diversity
across different demographics. Our findings reveal specific biomarkers in the amino acid
and lipid pathway that may serve as early indicators of childhood obesity and its associated
cardiometabolic complications.
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1. Introduction

Obesity has emerged as a significant global health issue, with its prevalence having
nearly tripled from 1975 to 2016 [1]. According to the World Health Organization (WHO),
approximately 60% of adults in Europe will be overweight or obesity in 2022 [2]. This
alarming trend not only poses immediate health risks but also predisposes affected subjects
to long-term health complications, such as hypertension, left ventricular hypertrophy,
insulin resistance and diabetes mellitus type 2 (DM2), metabolic dysfunction-associated
steatotic liver disease (MASLD), as well as mental health issues and cancer [3]. Furthermore,
during the last decade, obesity with or without metabolic aberrations, commonly termed
Metabolically Unhealthy Obesity (MUO) or Metabolically Healthy Obesity (MHO), respec-
tively, has been extensively investigated [4]. Metabolically Unhealthy Obesity (MUO) refers
to subjects with obesity who exhibit metabolic abnormalities, such as insulin resistance,
elevated blood pressure, dyslipidemia (elevated triglycerides and low HDL cholesterol
concentrations), and chronic inflammation. Unlike metabolically healthy obesity (MHO),
where subjects have excess body fat but normal metabolic profiles, MUO is strongly associ-
ated with an increased risk of DM2, cardiovascular disease, and non-alcoholic fatty liver
disease (NAFLD).

The intricate interplay of genetic, epigenetic, environmental, and lifestyle factors
contributes to the multifaceted nature of this epidemic [3]. In the quest for a better under-
standing of the underlying mechanisms and potential interventions, metabolomics has
emerged as a powerful tool, offering insights into the metabolic alterations associated with
childhood obesity [5,6].

Metabolomics is a field of study within the broader discipline of systems biol-
ogy, which focuses on the comprehensive analysis of small molecules or metabolites
(<1500 KDa) in a biological sample [7,8]. Metabolites are the end products of cellular
processes, and their concentrations can provide insights into the biochemical pathways and
physiological status of an organism at a specific point in time. It is particularly useful in
understanding the dynamic responses of biological systems to various alterations, includ-
ing genetic, epigenetic, or protein-level modifications, exposure to environmental factors
(physical exercise, diet, and microbiome) and diseases, and helps bridge the gap between
genotype and phenotype.

The primary goal of metabolomics is to profile and quantify the complete set of
metabolites present in a biological sample, such as blood, urine, or tissues. This profiling
involves the use of advanced analytical techniques, such as mass spectrometry (MS) and
nuclear magnetic resonance (NMR) spectroscopy, coupled with various chromatographic
separations to identify and quantify the diverse array of metabolites [9]. This way, the
systematic study of small molecules within biological systems may help us gain insight into
the metabolic changes associated with obesity, such as adipocyte-related inflammation and
insulin resistance [10]. The in-depth study of the unique metabolic fingerprints associated
with obesity may help us identify potential biomarkers and altered metabolic pathways,
and discover novel therapeutic targets. Numerous studies have underscored the utility
of metabolomics in elucidating the complex interplay between genetic predisposition,
dietetic habits, gut microbiome, and environmental factors in the pathogenesis of obesity
in adults [11]. However, to the best of our knowledge, few studies have been conducted
in children and adolescents [12]. Metabolic signatures may differ in early life, given that
children do not usually receive medical treatment for obesity. Therefore, metabolomic
profiling in children and adolescents will not only facilitate the identification of potential
biomarkers for the prevention and management of childhood obesity and its associated
complications, but it will also unravel novel therapeutic targets.
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The aim of this systematic review was to summarize the current knowledge on
metabolomics, childhood obesity, and MUO, and to identify metabolic signatures or
biomarkers associated with obesity in children and adolescents, thereby offering a compre-
hensive analysis of studies that employ metabolomic approaches. Through critical exami-
nation of the literature, this review aims to gain a better understanding of the metabolic
intricacies associated with childhood obesity and inform the direction of future research
and therapeutic strategies.

2. Materials and Methods
2.1. Study Design

This systematic literature review (SLR) was conducted following the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol [13]. The
objectives were formulated using the PICO/PECO (Population, Interventions/Exposure,
Comparators, Outcomes) framework (Table 1). The review was registered in the
International Prospective Register of Ongoing Systematic Reviews (PROSPERO 2023
CRD42023494461; https:/ /www.crd.york.ac.uk/prospero/display_record.php?ID=CRD4
2023494461, accessed on 29 December 2023).

Table 1. PICO/PECO framework for study selection on metabolomic biomarkers and childhood
obesity risk.

Variable Definition

Population Children and adolescents aged 2-19 years
Exposure/InterventionMetabolomics, metabolic signatures, and metabolic biomarkers
No intervention, any intervention, or standard care

Comparator The absence of the exposure or a different level of exposure
Ov/Ob and MUO risk
Outcome Association of metabolic signatures/biomarkers with

obesity /adiposity /metabolic disorders/endocrine disorders

2.2. Eligibility Criteria

The review included longitudinal prospective studies and randomized controlled trials
(RCTs), with a minimum of 12 months of follow-up, and meta-analyses of the above in order
to ensure a better quality of methodological design, which would also allow etiological
assumptions. The studies examined the metabolic signatures related to obesity, Body Mass
Index (BMI), or/and other measures of adiposity and MUO in children and adolescents
aged 2-19 years with overweight or obesity. The language was restricted to English and the
geographic location included only Western countries (Europe, USA, Canada, and Oceania)
that share similar socioeconomic, physical, and dietary environments. The inclusion and
exclusion criteria are shown in Table 2.

Table 2. Inclusion and exclusion criteria.

Parameter Inclusion Criteria Exclusion Criteria
for All Domains for All Domains
Animals
Human subjects with monogenic disorders
(e.g., MC4R deficiency, leptin deficiency, etc.),
Participants Human subjects syndromic forms of obesity (e.g., Prader—Willi,

Alstrom syndrome, etc.), or subjects receiving
medication known to affect weight (antidepressants,
antiepileptics, antipsychotics, mood stabilizers,
antimanic agents, and corticosteroids)
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Table 2. Cont.

Parameter Inclusion Criteria Exclusion Criteria
for All Domains for All Domains
Age 2 to 19 years old <2 years old and >19 years old
. Peer-reviewed journal Letters, editorials, study or review protocols,
Article type . :
articles pre-prints
Study area Europe, USA’. Canada, Asia, Africa, South America
Oceania
Longitudinal prospective
studies, rand.lornlz.ed Cross-sectional studies, controlled experiments,
. controlled trials with o L . ST
Study design in vitro studies, in vivo animal studies, in silico

Time of publication

Language

>12 months of follow-up,
and meta-analyses of
the above
1 January 2013-3 July 2024
for original publications and  Original publications prior to 31 December 2012 and

studies, and scoping reviews

1 January 2018-3 July 2024 meta-analyses prior to 31 December 2017
for meta-analyses
English Non-English

2.3. Literature Search

A comprehensive literature search was conducted using PubMed and Scopus
databases for studies published from 1 May 2023 to 16 September 2023. An additional data
search was performed on 3 July 2024 to update the results, retrieving studies published after
16 September 2023. The search strategy included a complex string of keywords related to
metabolic biomarkers, obesity, adiposity, and associated metabolic and endocrine disorders
in children and adolescents. The detailed search strings used for MEDLINE (PubMed) and
Scopus are presented in the Supplementary Materials, File S1.

2.4. Study Selection

Two independent researchers (GS and DK) screened the records identified from the
databases. In instances of disagreement, a third researcher (EC) conducted a final review.

2.5. Data Extraction, Outcomes, and Data Synthesis

Relevant data from eligible studies were extracted, including publication details, study
design, sample size, participant characteristics, metabolic signatures, biomarkers assessed,
and outcomes related to obesity and metabolic disorders. The primary outcomes assessed
were obesity and MUO in pediatric populations.

2.6. Validity Assessment

All included studies were assessed for risk of bias using the Risk Of Bias In Non-
randomized Studies—of Exposures (ROBINS-E) tool [14]. The risk of bias for each study
was evaluated across seven domains: confounding (D1), measurement of exposure (D2),
selection of participants (D3), post-exposure interventions (D4), missing data (D5), mea-
surement of outcomes (D6), and selection of reported results (D7). Three of the included
studies were post hoc analyses of participants who underwent a lifestyle intervention
(“Obeldicks”) within a non-randomized controlled trial [15,16] or a double-blind, random-
ized intervention trial [17]. Since the exposure of interest (metabolites) was not actively
assigned, ROBINS-E was deemed the most appropriate tool for assessing the risk of bias in
these studies.
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2.7. Data Management and Synthesis

Data were managed using Mendeley and Excel. Data extraction forms were piloted
and refined to ensure consistency and accuracy. Discrepancies between reviewers were
resolved through discussion and consensus. The extracted data were synthesized to provide
a comprehensive analysis of the metabolic signatures associated with childhood obesity
and MUO. The synthesis involved qualitative analyses to summarize the findings and
identify potential biomarkers and therapeutic targets. The characteristics of the included
studies, e.g., study design, country, sample size, age, follow-up period, methodology, key
metabolites identified, and reported outcome are presented in Table 3.

Table 3. Characteristics of the included studies.

Study Country  Study Design Sasr?zlzle Me;:?\gj:’ SD Foll,lg“i'\;;'lp Methodology Ke};ggﬁ:?g:éltes
Singh Longitudinal 81 3(518%?171}1)12(11’:12;
etal.,, USA cohort study (100% 16.08 + 1.20 1 vear UPLC-QTOEF- Formiminoylutamic, acid
2023 (Buckeye Teen 1 N years y MS (urine) 4-hvd 8 li ’
[18] Health Study) males) " YaroXyprotine,
Citrulline, Inosine
XL-VLDL-L, L-VLDL-L,
S-VLDL-L, ApoB/ApoAl,
VLDL-C, MUFAs,
Mansell Loneitudinal 98 MUFAs%, alanine,
etal,, A . & o 10.3 + 3.5 NMR phenylalanine, tyrosine,
2022 ustralia cohort study (52% ears 5 years (serum) ruvate, glycoprotein
(COBRA cohort) males) Y Py ' 8YCOp
[19] acetyls, HDL-C, LA%,
Omega-6%, PUFAs,
Acetoacetate,
3-hydroxybutyrate
Post hoc analysis
of participants
Reinehr who l%nderwent . ..
ot al. a hfesty.le 160 HPLC-MS Glutamine, methionine,
201 4’ Germany intervention (61.3% 11 £ 2 years 1 year (serum) LPCaC18:1, LPCaC18:2,
[15] (“Obeldicks”) males) LPCaC20:4, PCaeC36:2
within a
non-randomized
controlled trial
Post hoc
longitudinal
analysis of
Hellmuth E iomarker 39
etal,  Europe Cz z“ges over 200 5.5 4 0.07 a5 UPLC-QTOF-  Free carnitine, SM 32:2,
2019 (multi) > yearsm (50% years > years MS (serum) SM 34:2, Carn 3:0
[17] participants from males)
the CHOP study,
a double-blind,
randomized
intervention trial
Ojanen 396
etal,, Finland Longitudinal o 112+ 0.4 NMR ApoB/ApoA ratio,
2021 nian cohort stud (0% ears 7.5 years (serum) GlycAs
y males) Y Y

[20]
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Table 3. Cont.
. Sample Age, Follow-Up Key Metabolites
Study Country  Study Design Size Mean L SD Period Methodology Identified
Post hoc analysis
of participants
Hellmuth who E?dfr;/vent %
etal, anestye ) 115+ 24 HPLC-MS Acylcarnitines, amino
2016 Germany intervention (45% years 1 year (serum) acids
(“Obeldicks”) males)
[16] within a
non-randomized
controlled trial
190
Hosking UK Longitudinal [féu(ggo/l Study 1:
etal., L cohort study ° 9 years; 1H NMR Amino acids, lipids,
Switzer- . males); 4.8-5.1 years
2019 (EarlyBird Study 2: (serum) lactate
land Study 2:
[21] cohort) 150 (70% 11 years
males)]

2.8. Ethical Considerations

Since this study is a systematic review, ethical approval was not required. However,
ethical standards were maintained throughout the review process, ensuring the integrity
and accuracy of the findings.

3. Results
3.1. Characteristics of Included Studies

Initially, 595 records were identified from PubMed and 1565 from Scopus. After
removing duplicates and screening for relevance, 175 reports were assessed for eligibility.
Ultimately, 7 (4 longitudinal and 3 post hoc analyses of interventional studies) reports were
included in the review. From the additional search, 124 new records were retrieved, from
which none were eligible for our study. The flow diagram is presented in Figure 1.

Seven reports, which were derived from six studies, met the inclusion criteria and
were included in this systematic review. These studies were conducted in various coun-
tries, including the USA [18], Germany [15-17], Belgium [17], Italy [17], Poland [17],
Spain [17], Australia [19], UK [21], Switzerland [21] and Finland [20]. The included studies
were primarily longitudinal cohort studies [18-21] and post hoc analyses of intervention
studies [15-17], with follow-up periods ranging from 1 year [15,16,18] to 11 years [21].
The intervention part included lifestyle recommendations regarding physical activity,
nutrition, and behavioral therapy for the children and their families. The sample size
of these studies varied significantly, from 40 to 396 participants, and the age at baseline
ranged from 2 to 19 years. Serum and urine samples were used for the assessment of
metabolomic biomarkers.

The included studies examined the association between metabolic profiles and obesity-
related outcomes using various approaches (Table 4). Singh et al. (2023) explored the
metabolic features associated with increased BMI at one-year follow-up [18]. Mansell
et al. (2022) explored the association between changes in BMI and metabolomic pro-
files over a 5.5-year follow-up period [19]. Reinehr et al. (2014) assessed the metabo-
lite changes in children with obesity who underwent a lifestyle intervention and com-
pared those with substantial weight loss to those without substantial weight loss [15].
Hellmuth et al. (2019) used metabolite concentrations at 5.5 years to predict BMI z-scores at
age 8 in the CHOP study [17]. Ojanen et al. (2021) developed a standardized risk score for
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metabolic syndrome (MetS), having incorporated metabolic and cardiovascular parameters
that confer cardiometabolic risk [20]. Hellmuth et al. (2016) investigated the association
between metabolite changes and HOMA-IR over a one-year lifestyle intervention (physical
activity, nutrition education, and behavior therapy) [16]. Hosking et al. (2019) examined
the relation between individual metabolites and insulin resistance (HOMA-IR) in healthy
children, taking into account the effects of age, BMI, growth, puberty, adiposity, and physi-
cal activity [21]. This study included a pilot phase to identify metabolically distinct profiles
related to insulin resistance and a follow-up phase extending the analysis to the age of
16 years to validate the findings.

[ Identification of studies ]

Identification

Records initially retrieved:

PubMed (n = 595) > Records removed before screening:
Scopus (n = 1,565) Duplicate records removed (n = 686; of
Additional records retrieved on those 49 were from the 2" search)

2" search (n = 124)

L

)

v
Records screened:

L 5 Records excluded: (n = 1422)
(n = 1598)

Screening

Reports sought for retrieval:
(n=176)

- > Reports not retrieved: (n = 1)

Reports assessed for eligibility: Reports excluded: 168

(n =175) Other study designs (n = 47)

Eligibility

Other objectives (n = 53)
Other age groups (n = 19)

Asia, Africa, South America (n = 19)

L

Included

v .
Studies included in review: Letters, reviews, etc. (n = 17)
n==6 <12 months of follow-up (n = 12)
Outcome: Ov/Ob (n = 4) Animals (n=1)

Outcome: MUO (n = 4)

Reports of included studies™:
n=7

Figure 1. PRISMA flow diagram. Notes: Ov/Ob = overweight/obesity; MUO = Metabolically
Unhealthy Obesity. * Two reports were referred to a single study.
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Table 4. Outcomes of interest, statistical analysis, and results of included studies.

Author, Year (Reference)

Outcomes

Statistical Analysis

Results

Singh et al., 2023 [18]

Mansell et al., 2022 [19]

Reinehr et al., 2014 [15]

Significant metabolic features
associated with positive
change in BMI at 1-year

follow-up.

Association of change in BMI
from baseline to the end of
follow-up (5.5 years) with the
change in metabolomic
profiles.

Change in metabolites
between groups (children
with obesity with substantial
weight loss and children with
obesity without weight
loss; all underwent a lifestyle
intervention).

Estimate (95% CI) based on a
stratified linear regression

model (age, race, BMI z-score,

and total energy intake).

Coefficients (95% CI)
[Benjamini-Hochberg
adjusted p-value] of the
change in log concentrations
of metabolites in SD units
decrease in BMI over time per
unit (kg/m 2) from linear
regression models adjusted
for age at each time point and
sex.

The 14 metabolites
[glutamine, methionine,
proline, nine phospholipids
(PCaeC34:1, C34:2, C34:3,
C36:2, C36:3, C38:2,
LPCaC18:1, C18:2, and C20:4),
and two acylcarnitines (C12:1
and C16:1)] were compared
between baseline and 1-year
follow-up.

Glycylproline: —0.018 (—0.029, 0.007) p = 0.002,
3’-Sialyllactose: 0.009 (0.002, 0.016) p = 0.006,
formiminoglutamic acid: 0.016 (0.004, 0.028)

p = 0.008, glycylproline: —0.014 (—0.025, 0.003)
p = 0.01, 4-hydroxyproline: 0.016 (0.003, 0.03)

p = 0.016, Citrulline: 0.01 (0.002, 0.018) p = 0.013,
4-Vinylsyringol: —0.01 (—0.02, 0.001) p = 0.022,
Citrulline: 0.012 (0.001, 0.023) p = 0.025,
Inosine: 0.005 (0.0004, 0.01) p = 0.03,
lipoprotein subclasses: XL-VLDL-L: —0.038
(—0.066 to —0.01), p = 0.04; L-VLDL-L: —0.038
(—0.066 to —0.01), p = 0.04; S-VLDL-L: —0.039
(—0.071 to —0.008), p = 0.05; Apolipoproteins:
ApoB/ApoAl: —0.046 (—0.073 to —0.019), p = 0.01;
cholesterols: VLDL-C: —0.035 (—0.062 to —0.008),
p = 0.05; HDL-C: 0.045 (0.011 to 0.08), p = 0.04;
HDL2-C: 0.049 (0.016 to 0.082), p = 0.02; fatty acids:
unsaturation: 0.059 (0.022 to 0.097), p = 0.02;
MUFAs: —0.041 (—0.068 to —0.014), p = 0.02;
LA%: 0.065 (0.03 to 0.101), p = 0.01; Omega-6%:
0.069 (0.034 to 0.103), p = 0.003; PUFAs%: 0.065
(0.03 t0 0.1), p = 0.01; MUFAs%: —0.061 (—0.094 to
—0.028), p = 0.01; amino acids: alanine: —0.072
(—0.105 to —0.04), p = 0.002; phenylalanine: —0.069
(—0.102 to —0.037), p = 0.002; tyrosine: —0.068
(—0.099 to —0.037), p = 0.002; glycerides and
phospholipids: total triglycerides: —0.043 (—0.069
to —0.016), p = 0.02; VLDL-TGs: -0.042 (—0.07 to
—0.015), p = 0.02; TG/PG: —0.052 (—0.081 to
—0.023), p = 0.01; glycolysis-related metabolites:
pyruvate: —0.077 (—0.114 to —0.039), p = 0.002;
ketone bodies: Acetoacetate: 0.065 (0.021 to 0.109),
p = 0.02; 3-hydroxybutyrate: 0.066 (0.018 to 0.113),
p = 0.04; inflammation: glycoprotein acetyls:
—0.063 (—0.092 to —0.035), p = 0.002. Additional
adjustment for pubertal status confirmed
statistically significant associations for fatty acids:
LA%, PUFAs%, and MUFAs%; amino acids:
alanine, phenylalanine, and tyrosine;
glycolysis-related metabolites: pyruvate; and
inflammation: glycoprotein acetyls.

The 14 metabolites did not change significantly in
children without weight loss. In children with
substantial weight loss, glutamine [mean (SD) at
baseline: 567 (120), follow-up: 588 (102), p = 0.013],
methionine [mean (SD) at baseline: 27 (6),
follow-up: 29 (6), p = 0.026], LPCaC18:1 [mean (SD)
at baseline: 10 (2.8), follow-up: 10.9 (3), p = 0.003],
LPCaC18:2 [mean (SD) at baseline: 12.3 (5.2),
follow-up: 13.5 (5.2), p = 0.035], LPCaC20:4 [mean
(SD) at baseline: 19.6 (8.2), follow-up: 21.7 (7.7),
p =0.011] and PCaeC36:2 [mean (SD) at baseline:
4.5 (1.7), follow-up: 4.8 (1.4), p = 0.026] increased
significantly, while the other eight metabolites did
not change significantly.
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Table 4. Cont.

Author, Year (Reference)

Outcomes

Statistical Analysis

Results

Hellmuth et al., 2019 [17]

Ojanen et al., 2021 [20]

Hellmuth et al., 2016 [16]

Researchers used the
metabolite concentrations at
5.5 years to predict the BMI

z-score at 8 years of age in the
CHOP study.

To assess cardiometabolic risk,
a standardized continuously
distributed variable for
clustered metabolic risk (MetS
score) was constructed.
The risk score was calculated
by standardizing and then
summing the following
continuously distributed
metabolic traits: mean arterial
pressure ([(2 x diastolic blood
pressure) + systolic blood
pressure]/3); abdominal fat
mass; fasting plasma glucose;
serum HDL cholesterol x —1;
and fasting serum triglyceride
z-score. The z-scores for each
variable and MetS scores were
calculated separately for each
time point. A higher score
indicated a higher
cardiometabolic risk.

Association of changes in
metabolite concentrations
with change in HOMA over
the one-year intervention.

Linear regression models
adjusted for child age
and gender.

Regression analysis with
MetS score as the dependent
variable and metabolic
biomarkers identified by
LASSO as independent
variables, after Bonferroni
correction for multiple tests.

Change was defined as the
relative change over the
one-year intervention, with
estimates reported alongside
95% confidence intervals
(CIs). To assess the association
between metabolites and
markers of insulin resistance,
a two-step robust regression
approach was used. First,
metabolite levels were
adjusted for BMI using age-
and sex-adjusted robust
regression (M-estimator with
Huber bi-square weighting).
The residuals from this model
were then regressed on the
relative change in HOMA
over the intervention period,
using robust regression to
minimize the influence of
outliers.

Plasma levels of free carnitine (p = 6.17 x 107°),
SM 32:2 (p = 2.16 x 107%), SM 34:2 (p = 3.09 x 10~%)
and Carn 3:0 (p = 4.09 x 10~2) were significantly
positively associated with the BMI z-score at 8
years of age. However, after adjusting for the BMI
z-score at 5.5 years, no metabolite reached the
significance level. Regarding HOMA, glutamine at
age 5.5 years was significantly negatively
associated (p = 0.013/0.003) with HOMA indices at
8 years in both the unadjusted and adjusted linear
models. NEFAs 26:1 (p = 0.012/0.015), 26:2
(p =0.002/0.01), and 26:3 (p = 0.009/0.015) at age
5.5 years were significantly positively associated
with HOMA indices at 8 years in both the
unadjusted and adjusted linear models. Only
serine levels remained significantly associated
with HOMA in the adjusted model (p = 0.032).

Baseline ApoB/ApoA ratio and GlycAs positively
predicted while L-HDL-PLs negatively predicted
7.5-year Mets (r = 0.471 and
p <0.0001; r = 0.400 and p = 0.0005; and r = —0.465
and p < 0.0001, respectively,

p: adjusted for multiple comparisons by
Bonferroni). And 2-year ApoB/ApoA ratio and
GlycAs positively predicted and L-HDL-PLs
negatively predicted 7.5-year Mets (r = 0.449 and
p <0.0001; r = 0.440 and p < 0.0001; and r = —0.445
and p < 0.0001, respectively, p: adjusted for
multiple comparisons by Bonferroni) only.
ApoB/ApoA ratio, GlycAs, and L-HDL-PLs
remained significant predictors of MetS score
(p < 0.0001 for all). These associations were also
robust to multi-covariate adjustment, including
insulin, leptin, adiponectin, sex steroids, IGF-1,
physical activity, and energy yield nutrient intakes.

All: Carn C0 1.10 [0.29; 1.90] p = 0.008, Carn
C6:1-DC —0.33 [-0.59; —0.06] p = 0.015, Carn
C6-oxo —0.24 [-0.43; —0.05] p = 0.014, Pro 0.81
[0.19; 1.40] p = 0.011; ratio of Carn C5/Carn C6-oxo
0.24 [0.07; 0.41] p = 0.007, ratio of Carn
C6-oxo/xLeu —0.19 [-0.34; —0.03] p = 0.016, Tyr
0.79[0.17; 1.40] p = 0.015; weight loss: AAA sum
1.04 [0.29; 1.80] p = 0.009, Carn CO0 1.71 [0.88; 2.50]
p <0.001, Carn C3 0.49 [0.03; 0.96] p = 0.036; Carn
C6:1-DC —0.29 [-0.47; —0.10] p = 0.003; Carn
C6-oxo —0.21 [-0.35; —0.08] p = 0.003, Pro 0.72
[0.11; 1.30] p = 0.023, ratio of Carn C4/Carn C5-oxo
0.48 [0.18; 0.77] p = 0.0030, ratio of Carn C5/Carn
C6-0x0 0.22 [0.08; 0.35] p = 0.002, ratio of Carn
C6:1-DC/Carn C5:1 —0.22 [-0.41; —0.03] p = 0.024,
ratio of Carn C6-oxo/xLeu —0.15 [—0.25; —0.04]
p =0.007, Trp 1.13 [0.14; 2.10] p = 0.027, Tyr 1.09
[0.51; 1.70] p = 0.001, Val 0.73 [0.07; 1.40] p = 0.033;
no weight loss: ratio of Carn C5/Carn C6-oxo 0.29
[0.02; 0.57] p = 0.041.
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Table 4. Cont.

Author, Year (Reference)

Outcomes Statistical Analysis Results

Hosking et al., 2019 [21]

individual metabolites and IR Bonferroni-adiusted p-value
(HOMA-IR), taking into ) P fatty acids [CH2]n moieties) [0.133 (0.023),
account age, BMI z-scores,

Study 1 was designed as a time. Adiusted for age
pilot study to explore whether - Aq e p = <0.0001]; Arginine [—0.116 (0.021), p = <0.0001];
HOMA-IR was associated
with specific metabotypes.
Study 2 aimed at replicating
the observations in a higher moderate-vigorous physical

nun;ber O}f Childlren, andh & phy p = <0.0001]; Asparagine [—0.115 (0.021),
extending the analysis to the

Study 1: Leucine [—0.103 (0.027), p = 0.01]; Valine
[—0.107 (0.026), p = 0.003]; 3-D-hydroxybutyrate
[—0.106 (0.027), p = 0.01]; alanine [0.085 (0.024),
p = 0.03]; 3-D-hydroxybutyrate [—0.084 (0.024),
p = 0.02]; citrate [—0.132 (0.028), p = 0.0002];
Creatine [—0.095 (0.029), p = 0.06]; phospholipids
[—0.131 (0.031), p = 0.002]; Study 2: lipids (mainly
LDL, fatty acid CH3 moieties) [0.108 (0.023),
p = 0.0006]; Leucine [—0.121 (0.019), p = <0.0001];
Valine [—0.114 (0.02), p = <0.0001]; 2-Ketobutyrate
Association between Coef (SE) [—0.071 (0.019), p = 0.024]; 3-D-hydroxybutyrate
’ [—0.092 (0.018), p = <0.0001]; lipids (mainly LDL,

of mixed effects models for
the association between the
metabolite and log IR over

p = 0.00093]; lactate [0.101 (0.019), p = <0.0001];
alanine [0.156 (0.019), p = <0.0001]; lipids (mainly
VLDL, fatty acids [CH2] moieties) [—0.12 (0.022),

and physical activity.

gender, BMI z-score,
APHV (age at peak height
velocity), MVPA (number of
minutes spent in

Lysine [—0.112 (0.019), p = <0.0001]; glutamate
[-0.112 (0.021), p = <0.0001]; 3-D-hydroxybutyrate
[—0.118 (0.019), p = <0.0001]; glutamine [—0.118
(0.022), p = <0.0001]; citrate [—0.188 (0.021),

activity), tar;)d ll.rt‘dW‘dual p = <0.0001]; Trimethylamine [—0.123 (0.022),

age of 16 years. metabottes. p = <0.0001]; Dimethylglycine [—0.118 (0.021),

p = <0.0001]; Lysine [—0.139 (0.02), p = <0.0001];
Creatine [—0.142 (0.023), p = <0.0001]; Citrulline
[—0.137 (0.022), p = <0.0001]; Creatine [—0.121
(0.025), p = 0.00013]; serine [—0.134 (0.022),

p = <0.0001]; Histidine [—0.136 (0.021),

p = <0.0001]; Histidine [—0.124 (0.022),

p = <0.0001]. When correcting for main covariates
(gender, age, BMI z-scores, physical activity, and
APHV), only the association between lactate and
log IR remained significant.

Abbreviations: APHV—at peak height velocity; ApoB/ApoA—Apolipoprotein B to Apolipoprotein A-1;
BMI—Body Mass Index; Carn—acylcarnitine; CI—confidence interval, GlycAs—glycoprotein acetyls; HOMA—
Homeostatic Model Assessment for Insulin Resistance; IGF-1—insulin-like growth factor 1; IR—insulin resistance;
LASSO—Least Absolute Shrinkage and Selection Operator; L-HDL-PLs—large high-density lipoprotein phos-
pholipids; LPC—Ilyso-phosphatidylcholine; MUFAs—monounsaturated fatty acids; NEFAs—non-esterified fatty
acids; p—p-value; PCae—alkyl-acyl phosphatidylcholine; PUFAs—long-chain polyunsaturated fatty acids; SE—
standard error; SM—sphingomyelins; VLDL—very-low-density lipoprotein.

3.2. Obesity Outcomes and Their Association with Metabolites

Our findings suggest that weight gain and weight loss influence distinct metabolic
pathways, particularly in amino acids, lipids, and glycolysis-related metabolites.

3.2.1. Amino Acids and Obesity Outcomes

Changes in amino acid metabolism were consistently observed across studies.
Singh et al. (2023) reported increases in Citrulline, 4-hydroxyproline, and Inosine with BMI
gain [18]. Mansell et al. (2022) found that BMI reduction was associated with decreases
in alanine, phenylalanine, and tyrosine [19]. In contrast, Reinehr et al. (2014) identified
higher levels of glutamine and methionine in children who experienced significant weight
loss [15]. These findings suggest that weight loss is associated with increased levels of
certain amino acids (e.g., glutamine, methionine), while weight gain may correspond to
increases in other amino acids (e.g., Citrulline, hydroxyproline).

3.2.2. Lipids and Fatty Acids and Obesity Outcomes

Metabolomic shifts in lipid profiles were evident. Mansell et al. (2022) observed that
BMI reduction led to decreases in VLDL cholesterol and monounsaturated fatty acids
(MUFAs), alongside increases in polyunsaturated fatty acids (PUFAs), Omega-6, and HDL
cholesterol [19]. Similarly, Reinehr et al. (2014) found significant changes in phospholipids
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(PCaeC34:1, PCaeC34:2, etc.) among children who lost weight [15]. In contrast, Hellmuth
et al. (2019) reported a positive association between sphingomyelins (SM 32:2, SM 34:2) and
free carnitine with BMI at the age of 8 years, although this association was not as strong
after adjusting for BMI at the age of 5.5 years [17]. These results indicate that weight gain is
associated with sphingomyelins and free carnitine, whereas weight loss is associated with
phospholipid alterations and shifts in fatty acid composition (e.g., increased PUFAs and
Omega-6 levels).

3.2.3. Glycolysis-Related and Energy Metabolites and Obesity Outcomes

Metabolites involved in energy metabolism were also affected by weight changes.
Mansell et al. (2022) demonstrated that BMI reduction was associated with lower pyruvate
levels, suggesting altered glycolysis [19]. In addition, Singh et al. (2023) found that
3’-Sialyllactose increased with increases in BMI, potentially indicating metabolic shifts
related to energy balance [18]. These findings suggest that an increase or decrease in
BMI influences glycolysis and energy-related pathways, with weight reduction linked
to decreased glycolysis activity (e.g., lower pyruvate) and weight gain associated with
increased sialyllactose levels.

3.3. Metabolically Unhealthy Obesity Outcomes and Their Association with Metabolites
3.3.1. Apolipoproteins, Lipids, and Fatty Acids in Relation to Risk for Metabolic Syndrome

Lipid-related biomarkers have been consistently associated with metabolic dysfunc-
tion. Ojanen et al. (2021) found that higher ApoB/ApoA ratios and glycoprotein acetyls
(GlycAs) were strong predictors of metabolic syndrome, whereas higher large high-density
lipoprotein phospholipids (L-HDL-PLs) were protective, showing a negative association
with MetS [20]. Similarly, findings from the CHOP study (Hellmuth et al., 2019) demon-
strated that higher levels of non-esterified fatty acids (NEFAs 26:1, 26:2, 26:3) were positively
associated with HOMA-IR, even after adjusting for BMI, indicating their potential role in
insulin resistance [17]. These findings suggest that increased ApoB/ApoA, GlycAs, and
NEFAs contribute towards a greater metabolic risk, while HDL phospholipids may play a
protective role.

3.3.2. Amino Acids and Insulin Resistance

Amino acid metabolism has also been associated with insulin sensitivity and metabolic
health. Hellmuth et al. (2019, CHOP study) found that higher glutamine levels were associ-
ated with lower HOMA-IR, suggesting a protective effect against insulin resistance [17]. In
contrast, findings from the EarlyBird study (Hosking et al., 2019) indicated that multiple
amino acids, including leucine, valine, alanine, and glutamine, were associated with insulin
resistance [21]. In addition, Hellmuth et al. (2016) reported that weight loss resulted in
increases in proline, tyrosine, and valine, along with acylcarnitine shifts, but decreases
in Carn C6:1-DC and Carn C6-oxo, suggesting improved insulin sensitivity [16]. Taken
together, these findings indicate that higher glutamine levels may be beneficial, whereas
BCAAs (leucine, valine) are associated with metabolic dysfunction.

3.3.3. Energy Metabolism and Insulin Sensitivity

Metabolic markers related to energy metabolism, particularly glycolysis byproducts
and mitochondrial metabolites, further illustrate the metabolic shifts associated with MUO.
The EarlyBird study (Hosking et al., 2019) identified a strong positive association between
lactate and insulin resistance, reinforcing its role as a key metabolic indicator of metabolic
health [21]. Furthermore, Hellmuth et al. (2016) demonstrated that acylcarnitine profiles
shifted in response to weight loss, with increases in Carn C0, Carn C3, and Carn C5, and
decreases in Carn C6:1-DC and Carn C6-oxo levels, reflecting changes in mitochondrial fatty
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acid oxidation associated with improved insulin sensitivity [16]. Collectively, these findings
may suggest that higher lactate levels are strongly associated with insulin resistance, while
shifts in acylcarnitine metabolism may reflect improved mitochondrial function following
weight loss.

The above results, as well as the statistical analysis performed, are presented in Table 4.

3.4. Risk of Bias Assessment

The studies by Singh et al., 2023 [13], and Reinehr et al., 2015 [15], have a high overall
risk of bias mainly due to concerns in domains D3 and D1, respectively. The study by
Hellmuth et al., 2019 [16], has a high overall risk of bias mainly due to concerns in domain
D1. The other studies were of some concern regarding the overall risk of bias, mostly
due to issues in domains D3 or D5. The overall risk of bias for each study is summarized
in Table 5.

Table 5. Risk of bias of the included studies.

Study
[Author, Year
(Reference)]

Risk of Bias for Longitudinal Studies

D5 Overall

Singh et al., 2023 [13]
Mansell et al., 2021 [14]
Reinehr et al., 2015 [15]

Hellmuth et al., 2019 [16]
Ojanen et al., 2021 [18]
Hellmuth et al., 2016 [21]
Hosking et al., 2019 [19]

D3
@ @
@

0000600 O-=
0000000 :
0000000 :
o0 00

0000000
0000000

Notes: Domain of risk of bias, i = 1-7 as follows. D1, due to confounding. D2, arising from the measurement
of the exposure. D3, in the selection of participants in this study (or in the analysis). D4, due to post-exposure
interventions. D5, due to missing data. D6, arising from the measurement of the outcome. Color/symbol coding

of risk of bias. . ; high risk of bias. . ; some concerns. . ; low risk of bias.

4. Discussion

Obesity is a significant and escalating health problem globally, impacting both adults
and children. Despite its prevalence, the precise mechanisms driving the development
of obesity in children remain unclear. Therefore, in our systematic review, we aimed to
identify candidate metabolites or profiles of obesity in children and adolescents who are
relatively free of its metabolic complications. To the best of our knowledge, this is one of
the first systematic reviews summarizing all available longitudinal studies focusing on
metabolomics in childhood obesity.

Our thorough investigation of currently available longitudinal studies demonstrated
that childhood obesity is associated with unique alterations in the metabolome, especially
in lipid and amino acid metabolism. From a longitudinal perspective, our results strengthen
the conclusions from other reviews that included cross-sectional data [11,12,22]. It is well
known that obesity affects lipid levels through various lipid metabolism processes, includ-
ing fatty acid oxidation, lipolysis, and lipogenesis [23]. Furthermore, numerous lipids act
as signaling molecules in inflammation pathways or insulin resistance, contributing to
obesity-related complications, such as DM2 and cardiovascular disease. Acylcarnitines
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are the byproducts of noncomplete fatty acid oxidation [24]. The majority of the included
studies stated an association of lipids with changes in BMI, insulin resistance, and the risk
of metabolic syndrome [15,17,19,20]. More specifically, these included certain lipoproteins
(XL-VLDL-L, L-VLDL-L, and S-VLDL-L); Apolipoproteins (ApoB/ApoAl); cholesterols
(VLDL-C); fatty acids (MUFAs, MUFAs%); glycerides and phospholipids (total triglyc-
erides, VLDL-TGs, and TG/PG); and increases in certain cholesterols (HDL-C, HDL2-C),
fatty acids (unsaturation, LA%, Omega-6%, and PUFAs), ketone bodies (Acetoacetate,
3-hydroxybutyrate), the lyso-phosphatidylcholines LPCaC18:1, LPCaC18:2, and LPCa20:4,
the acyl-alkyl phosphatidylcholines PCaeC36:2, NEFAs 26:1, 26:2, and 26:6 |; and L-HDL-
PLs. The study by Mansell et al. [19] provides a detailed overview of how weight loss
can affect a wide array of lipoproteins, fatty acids, and amino acids. For instance, in-
creases in unsaturated fatty acids (LA%, PUFAs%) and HDL cholesterol are indicative of
an improvement in lipid metabolism, which is generally associated with better insulin
sensitivity. Conversely, certain lipoproteins (like VLDL-C) and saturated fatty acids (MU-
FAs%) may reflect adverse metabolic changes. These results are consistent with findings
from Ojanen et al. [20], who identified the Apolipoprotein B/ Apolipoprotein A-1 ratio
and glycoprotein acetyls as predictors of metabolic syndrome, reinforcing the concept that
changes in lipoproteins and fatty acid composition may serve as useful biomarkers for
cardiometabolic risk.

Amino acids play a crucial role in various physiological processes, including protein
synthesis, intracellular metabolism, and immune response [25]. Six out of seven of the
included reports documented an association of amino acids with changes in BMI and in-
sulin resistance [15,16,18,19,21]. Among the overarching class of amino acids, peptides, and
analogs included were glycylproline, Citrulline, formiminoglutamic acid, 4-hydroxyproline,
alanine, phenylalanine, tyrosine, glutamine, methionine, serine, and alanine. In 2016,
Zhao et al. reviewed insulin resistance in childhood obesity using blood metabolomics
studies [26]. The authors concluded that amino acid and lipid metabolism were the most
impacted. Specifically, branched-chain amino acids (BCAAs), aromatic amino acids (AAAs),
and acylcarnitines were identified as being closely associated with insulin resistance and
potential future cardiometabolic risk. Analysis of the cord blood metabolome of 399 new-
borns from four European cohorts showed that lower levels of BCAAs, valine, and leucine
predicted overweight in childhood [27]. Furthermore, Hellmuth et al. [16] showed that
changes in acylcarnitines and amino acids following weight loss owing to the implementa-
tion of lifestyle interventions were associated with improved insulin sensitivity, supporting
the notion that these metabolites may serve as indicators of metabolic improvements. These
findings suggest that metabolic shifts resulting from weight loss could improve overall
health by addressing imbalances in these biomarkers.

One of the most critical metabolic disturbances associated with obesity in children is
insulin resistance and DM2. The relation between obesity and insulin resistance is complex,
especially in children. Understanding the mechanisms underlying insulin resistance in
childhood obesity is crucial. Metabolomic profiling is an emerging approach to investigate
the molecular origins of insulin resistance in children. Various cross-sectional studies
in animals and adults have shown associations between insulin resistance or DM2 and
BCAAs, as well as aromatic amino acids (AAAs), sulfur-containing amino acids, other
amino acids, and short-chain acylcarnitines (Carns) [28-30]. The study by Hellmuth
et al. [16] demonstrated that tyrosine and AAAs are the only metabolites significantly
associated with HOMA-IR at baseline and after one year of the implementation of a lifestyle
intervention program inducing substantial weight loss > 0.5 BMI standard deviation (SD)
scores in children with obesity. Similarly, in a meta-analysis of 8000 adults, there was a 36%
higher risk of DM2 per study-specific SD difference for isoleucine, 35% for valine, 36% for
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tyrosine, and 26% for phenylalanine [31]. The authors explained that tyrosine is an aromatic
amino acid metabolically linked to BCAAs and may act as a primary alteration or a more
significant marker in the cascade of metabolic changes, even more consistently than the
BCAAs, in some cases. Furthermore, Hellmuth et al. [16] used different ratios as biomarkers
for insulin resistance, such as C5/C6-oxo, C4/C5-oxo0, C6-oxo/xLeu, and C5-OH/C5:1
in different subgroups. All of these indicated that incomplete fatty acid oxidation was
related to a higher score of HOMA-IR. It is likely that reduced complete fatty acid oxidation
results in the stimulation of proinflammatory pathways, impaired insulin action in skeletal
muscle, enhanced mitochondrial stress, and finally impaired glucose metabolism in humans
and rodents. Furthermore, given that C3 and C5 acylcarnitines were the byproducts
of BCAAs, reduced complete fatty acid oxidation seemed to be influenced by BCAA
metabolism, indicating a close interaction of amino acid metabolism and lipid metabolism.
In the study of Hosking et al. [21], insulin resistance was associated with a characteristic
molecular phenotype, including lower levels of BCAAs and 2-ketobutyrate. This association
was mainly attributed to the role of the mitochondrial enzyme Branched-Chain Keto
acid Dehydrogenase (BCKD) in the generation of elevated BCAAs and branched-chain
keto acids in insulin resistance and obesity [32]. The Krebs cycle through citrate and
3-hydroxybutyrate intermediates reduced ketogenesis, while elevated lactate and alanine
concentrations were found to precede insulin resistance. The association between lactate
and insulin resistance was robust even after adjusting for confounders, suggesting that
lactate may serve as a reliable biomarker for metabolic health. Lactate, which is traditionally
considered a byproduct of anaerobic metabolism, has emerged as an important molecule in
metabolic disorders, and its elevated levels may reflect a shift toward anaerobic glycolysis,
which is commonly seen in conditions of insulin resistance and metabolic stress. However,
these findings are derived from a longitudinal study of a cohort of healthy children and
may be different in children with obesity.

Obesity also represents a cardiovascular risk factor. One study evaluated childhood
metabolic predictors of adult cardiovascular disease risk (MetS score) in a cohort of 396
females [20]. The authors suggested that exposure to atherogenic Apolipoprotein profile
and low HDL concentrations in childhood, as well as a proinflammatory response that
includes GlycAs, may lead to changes in the arteries that contribute to the development
of atherosclerosis and coronary heart disease in adulthood. The ApoB/ApoAl ratio in-
dicates the balance between atherogenic ApoB and antiatherogenic ApoAl cholesterol
particles and is strongly and positively correlated with cardiovascular risk in adults [33].
In a pediatric population, the ratio of ApoB/ApoAl ratio was also strongly correlated
with increased waist circumference, BMI, fat percentage, diastolic blood pressure, and
incidence of MetS [34]. Furthermore, the ApoB/ApoAl ratio in young Finns predicted
carotid intima-media thickness and brachial endothelial function in adulthood [35]. The
association of low HDL phospholipids with coronary artery disease has been documented
in adult subjects too [36]. Finally, GlycAs might also serve as biomarkers of subclinical
vascular inflammation. In the study by Mansell et al. [19], decreases in BMI were associated
with decreases in glycoprotein acetyls. In a cross-sectional study of 9842 adults, GlycAs
correlated with adiposity, insulin resistance, and other markers of metabolic syndrome and
all-cause mortality [37,38].

The present study has notable strengths. One of the key strengths of this systematic
review is its comprehensive approach to literature search and inclusion criteria, which
ensured a broad capture of relevant studies. An additional strength is the diversity of the
included populations, spanning multiple countries and age groups. Moreover, the focus on
longitudinal studies and randomized controlled trials with long follow-up periods allows
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for a more in-depth understanding of causal relations and the progression of metabolic
changes associated with obesity.

Despite its strengths, the review has several limitations. The potential for publica-
tion bias is significant, given that studies with positive findings are more likely to be
published. This bias may overestimate the association between certain metabolites and
obesity outcomes. In addition, the exclusion of non-English studies may limit the com-
prehensiveness of the review, as relevant research published in other languages was not
considered. The included studies varied widely in their design, sample size, population
characteristics, and methodologies. This heterogeneity introduces variability in the results,
making direct comparisons between studies challenging. There is a lack of standardization
in the metabolomic techniques and analytical platforms used across the included studies.
Differences in sample preparation, metabolite extraction, and data analysis can lead to
inconsistencies in the identification and quantification of metabolites. This variability may
impact the reproducibility of the findings. The wide age range of participants, from early
childhood to adolescence, may introduce age-related metabolic variations that are not fully
accounted for in the analyses. Metabolic processes can differ significantly between younger
children and adolescents, affecting the generalizability of the results. The studies included
in this review were conducted in various geographic regions, including Europe, the USA,
and Australia. While this diversity is a strength, it also introduces potential geographic
and socioeconomic variations that may influence metabolic profiles. Differences in diet,
lifestyle, and access to healthcare can impact the generalizability of the findings.

The results from our systematic review suggest that changes in BMI in children and
adolescents with obesity are associated with specific metabolic changes in the metabolome
of individuals, especially in amino acids and lipid metabolism, which may serve as pow-
erful diagnostic tools for disease monitoring and risk assessment. Understanding the
pathways and mechanisms driving these associations is crucial for developing targeted
interventions. Further research should focus on elucidating these mechanisms to provide a
more comprehensive understanding of the metabolic alterations associated with obesity. In
the future, longitudinal studies that track metabolic changes over time, intervention studies
that evaluate the efficacy of therapeutic strategies, and large-scale population studies that
explore metabolic diversity across different demographics will be important.

5. Conclusions

Metabolomics enhances our comprehension of disease progression and metabolic
pathways in an obesogenic environment. This systematic review offers valuable insights
into specific metabolite patterns characteristic of childhood obesity, including metabolically
healthy and unhealthy phenotypes, and potential metabolomic profiles associated with
their complications. However, available longitudinal studies in children and adolescents
are few, and further studies are required to confirm the proposed metabolic signature.

Weight loss appears to improve several metabolic parameters, including lipid
metabolism, amino acid profiles, and inflammatory markers, which may contribute to
better insulin sensitivity and reduced risk for metabolic diseases. Notably, certain metabo-
lites such as glycoprotein acetyls, ApoB/ApoAl ratio, and lactate emerge as promising
biomarkers for insulin resistance and metabolic syndrome, suggesting their potential utility
in clinical settings. The metabolic fingerprints gleaned from these studies not only shed
light on the current state of metabolic health in children with obesity but also have the
potential to guide preventive and therapeutic strategies. This knowledge can be particularly
important in the pediatric population, where early intervention might have long-lasting
effects. Given the findings, the high risk of bias in some studies does not undermine the
overall value of metabolomics in childhood obesity research but emphasizes the need for
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stringent methodological approaches in future studies to enhance the reliability of the
conclusions drawn. As such, continued exploration of metabolomic profiles in childhood
obesity is warranted, particularly in pediatrics, to develop targeted interventions and
prevent the long-term consequences of this condition.
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